If it's not what You are looking for type in the equation solver your own equation and let us solve it.
36x^2+48x-24=0
a = 36; b = 48; c = -24;
Δ = b2-4ac
Δ = 482-4·36·(-24)
Δ = 5760
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5760}=\sqrt{576*10}=\sqrt{576}*\sqrt{10}=24\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(48)-24\sqrt{10}}{2*36}=\frac{-48-24\sqrt{10}}{72} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(48)+24\sqrt{10}}{2*36}=\frac{-48+24\sqrt{10}}{72} $
| 12 = c4+ 8 | | 9u-3=-57 | | 6x-23(6)=20 | | 2x(57x+8000)=3x(40+8000) | | 6x-23x6=20 | | 3p-12=14+p | | 4n+9=5n+6 | | 9x^2+17=21 | | 4*(2x+3)+3*(-3x-2)=0 | | 1/8x^2-9=-7 | | -8+5x-2=2 | | 45f-85=5 | | 12.4+4m=9.6+8m | | 0=-5/4(x-5/6) | | 7−2g=3 | | 2(3x^2-15)+2(x^2+x)=180 | | 1/3(x-2)+5/6(x-2)=x-2 | | 3(10-4x)=174 | | 19x+5+20x=180 | | 5x^2=2=7 | | F(x)=x2+4x+3 | | 8(n+3)=4n-4 | | 4x-05(3x+10)=126 | | 3/8=g/8/5 | | 4v/3=16 | | 11^n-8-5=54 | | (2x+3)=(5x-3) | | 4(3x=9)=7x=36=5x | | 10g+20=70 | | k/(-7/2)=2/3/5 | | |n|=5 | | 4-8p=11 |